BORON ACTS AS A CATALYZER FOR MOST OTHER PLANT NUTRIENTS

ANTAGONISM

Decreases availability for plants due to the action of the other nutrient

SYNERGISM

Increases availability for plants because the nutrient increases at the right level with respect to the other nutrient

N

Urease enzyme is inhibited by boric acid. B stabilizes the inner membrane of glycolipids in the heterocyst's covering and delays the O2 diffusion.

HIGH DOSE B ←→ N LOW DOSE

B → N

SUITABLE DOSE

P

B has an important role in the transport of P through the membranes

LOW DOSE

B ← P

SUITABLE DOSE

B ← P

K

Absorption of K increases in the presence of B and it hardly occurs in its absence Optimal level of boron increases potassium permeability in the cell membrane

HIGH DOSE

LOW DOSE

SUITABLE DOSE

Mg

Mg Interacts with B, Ca, and P to enable photosynthesis

HIGH DOSE

B ← Mq

LOW DOSE
B → Mg

B ---- Mg

Al

B decreases toxicity caused by aluminum

SUITABLE DOSE

Boron

Ca

Ca and B play an important role in cell wall metabolism and are required for auxin transport process. Boron protects Ca in cell wall

HIGH DOSE B ←→ Ca

Fe

B levels influence Fe absorption and translocation paralleling the dry matter production

HIGH DOSE B ←→ Fe

Mn

B deficiency reduces Mn uptake and limits root growth

HIGH DOSE

B ←→ Mn

SUITABLE DOSE

Zn

Together with B play an optimal functioning in the ATPase and the plasmatic membrane redox systems

LOW DOSE
B ← Zn

HIGH DOSE B ←→ Zn SUITABLE DOSE

